
1097

Bounded Practical Social Reasoning in the ESB
Framework

Iain Wallace
School of Informatics

The University of Edinburgh
Edinburgh EH8 9AB, United Kingdom

iain.wallace@ed.ac.uk

Michael Rovatsos
School of Informatics

The University of Edinburgh
Edinburgh EH8 9AB, United Kingdom

michael.rovatsos@ed.ac.uk

ABSTRACT

Reasoning about others, as performed by agents in order to
coordinate their behaviours with those of others, commonly
involves forming and updating beliefs about hidden system
properties such as other agents’ mental states. In this pa-
per we introduce the Expectation-Strategy-Behaviour (ESB)
framework which provides a generic machinery for such prac-
tical social reasoning and can be easily coupled with de-
liberative, knowledge-based architectures such as BDI. We
present a conceptual model of ESB, its formal semantics,
and simple initial reasoning algorithms that illustrate how
the principles of ESB can be used to implement bounded
“social” rationality in multiagent designs. A case study is
used to show how ESB substantially simplifies the design of
agents that include social reasoning functionality.

Categories and Subject Descriptors

I.2.11 [Artificial Intelligence]: Distributed Artificial In-
telligence—Multiagent Systems

General Terms

Algorithms, Design, Theory

Keywords

Architectures, Methodology, Expectations, Social Reason-
ing, Agent-Oriented Software Engineering, BDI

1. INTRODUCTION
Social reasoning, i.e. reasoning about others in order to

better coordinate one’s behaviour with theirs, plays a crucial
role in achieving intelligent decision making in multiagent
systems. In the general case the internal state of agents is
usually not observable to other agents, e.g. in systems in
which agents pertain to different users unwilling to reveal
all details of their agent’s internal design. As such, social
reasoning mostly concerns hidden properties of the system,
i.e. beliefs about non-observable features of the system such
as other agents’ beliefs and goals, their trustworthiness, etc.

From an agent design point of view, specifying what an
agent should think about others in specific circumstances

Cite as: Bounded Practical Social Reasoning in the ESB Framework,
Iain Wallace, Michael Rovatsos, Proc. of 8th Int. Conf. on Au-
tonomous Agents and Multiagent Systems (AAMAS 2009),
Decker, Sichman, Sierra and Castelfranchi (eds.), May, 10–15, 2009, Bu-
dapest, Hungary, pp. XXX-XXX.
Copyright c© 2009, International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

requires the specification of reasoning rules that define how
beliefs about these non-observable properties will be formed
and updated based on observable features of the overall be-
haviour of the system (such as environmental state changes,
agent actions, etc). So what is needed are belief revision [4]
mechanisms that work in practice for the agent when inter-
acting with others and in accordance with its local beliefs, its
objectives, and its deliberation and planning mechanisms.

Such belief revision strategies would normally be inte-
grated in traditional practical reasoning architectures such
as BDI [2, 7] within the belief update functions of the ar-
chitecture, which forms part of the sense-reason-act cycle of
any architecture suitable for use in agent-based systems.

In this paper, we argue that singling out belief update
rules for social reasoning from general belief revision mech-
anisms can be beneficial because

1. it enables us to apply bounded rationality principles to
social reasoning (in a similar way as these are applied
to general practical reasoning in architectures such as
BDI), and

2. it simplifies the agent implementation process from the
designer’s point of view by providing automated sup-
port specific to reasoning patterns that are common in
social reasoning.

To support these claims, we report on a framework for prac-
tical social reasoning called the Expectation-Strategy-Beha-
viour (ESB) architecture which we have developed and which
provides the abstractions and reasoning mechanisms that
are necessary to realise the suggested benefits. A particular
driving factor behind the design was that the techniques de-
veloped can be used in a practical way to help agent system
designers, and to build a coherent reasoning machinery.

ESB is fundamentally based on the notion of expectations
as beliefs regarding hidden properties of the system that
contain a specification of a “test” that will be used to ver-
ify whether the property held or not. They also contain
“responses”which describe how the agent will update its be-
liefs depending on the outcome of the test (where different
expectations in the agent’s overall “expectation base” may
affect each other). We argue that expectations, together
with strategies (which describe the style of reasoning that
the agent applies to its expectation base) and behaviours
(that capture how the currently held expectations affect ac-
tual agent behaviour) provide us with a natural way for de-
scribing concrete social reasoning methods and for devising
modular social reasoning designs.

Cite as: Bounded Practical Social Reasoning in the ESB Framework,
Iain Wallace, Michael Rovatsos, Proc. of 8th Int. Conf. on Autonomous
Agents and Multiagent Systems (AAMAS 2009), Decker, Sichman, Si-
erra and Castelfranchi (eds.), May, 10–15, 2009, Budapest, Hungary, pp.
1097–1104
Copyright © 2009, International Foundation for Autonomous Agents
and Multiagent Systems (www.ifaamas.org), All rights reserved.

AAMAS 2009 • 8th International Conference on Autonomous Agents and Multiagent Systems • 10–15 May, 2009 • Budapest, Hungary

1098

Furthermore, use of ESB enables us to develop relatively
simple automated analysis algorithms that can be utilised by
the human designer to support the design process. We will
illustrate this by proposing initial graph-based algorithms
that can be used in this way.

It should be emphasised that ESB does not propose a
concrete social reasoning method. Such methods, based on
(inter alia) concepts such as norms and social laws [3], com-
mitments, trust and reputation [6, 5], or opponent modelling
[8], abound in the literature [9, 11]. Instead, ESB is based on
the very generic idea of “managing belief revision strategies
about hidden properties in a boundedly rational but socially
meaningful way” that could be applied to any beliefs con-
cerning social reasoning concepts like those listed above. In
this way, it aims at achieving a level of generality similar
to that of “meta-architectures” like BDI, while at the same
time capturing all the elements that are frequently used by
social reasoners to support the process of designing them.

The remainder of this paper is structured as follows: In
section 2, we introduce the ESB architecture informally.
This is followed by the presentation of a formal model of
the framework in section 3. Section 4 illustrates the work-
ings of the ESB model with an example, which is used in
section 5 where we introduce simple reasoning algorithms
for our framework. Section 6 concludes, and section 7 gives
an outlook to future work.

2. THE ESB ARCHITECTURE
The ESB architecture is an abstract model for practical

social reasoning systems based on the concept of expecta-
tions, which we can define as follows:

An expectation is a conditional belief regarding a
statement whose truth status will be eventually
verified by a test and reacted upon by the agent
who holds it.

More concretely (and as will be defined formally below), we
assume that an expectation concerns a belief Φ held by an
agent A under condition C. Depending on the outcome of
a test T , the agent will take action ρ+ if the expected belief
was confirmed (positive response), and ρ− if not (negative
response).

As an example, consider an agent A who expects another
agent B to execute some action upon promising to do so.
The expected belief is “B will perform an action (Φ) if he
has promised to do so (C)”, the test (T) consists of observ-
ing either the action itself or its consequences. The reaction
might be, for example, that A will reward or punish B de-
pending on whether the promise is kept (ρ+) or not (ρ−),
respectively; or, the expectation itself might be modified
after having observed that B performs the action or not,
for example by increasing or decreasing the level of trust
towards B.

Why should expectations be an important concept for so-
cial reasoning? We argue that this is because they cap-
ture all the elements that are normally present in systems
that reason about maintaining and revising beliefs regarding
parts of the system that cannot be observed directly. Intu-
itively, if Φ is a hidden property of the system (e.g. “agent B
is trustworthy” in the example above), the reasoning agent A
would make its belief in this statement contingent on some
condition C under which it is relevant (simply to split a po-
tentially large set of possible beliefs into manageable subsets

each of which is only relevant under certain circumstances),
and it would specify circumstances T under which the belief
would be reaffirmed or negated. Finally, the agent’s design
would have to specify what to do if the test succeeds (ρ+),
and what to do if it fails (ρ−).

Another property of such social reasoning rules is that dif-
ferent statements about expectations tend to be specified in
a disconnected (or, to put it more positively, modular) way in
practice: In the above example, one might specify “if B does
not perform the promised action, I will start thinking that
he is a liar”and“if B has kept his promise on more than 80%
of all occasions, he is not a liar” separately, as these reflect
“rules of thumb”regarding our assumptions about others’ in-
ternal properties and the heuristics we apply to guess these
properties from observed behaviour. This intuition leads us
to believe that individual social reasoning rules can be self-
contained and there may be in fact situations where a bunch
of these rules are put together in a system with no regard
for consistency between them.

Strategies, on the other hand, specify ways in which sets of
expectations are processed. The easiest way to conceptualise
this process is to think of all possible sets of expectations
that could arise from future observations of test outcomes,
and to think of a strategy as a particular way of travers-
ing the graph that results from mapping out all possible
future expectation-relevant events. This is where bounded
rationality comes into play, as different strategies allow for
different levels of complexity in projecting possible future
beliefs. Simple strategies include bounding the depth of pre-
dictions, or excluding expectation sets that are unreachable
from the initial state, or impossible because of mutually ex-
clusive test outcome. More complex, and truly “social” ones
include, for example, assuming that different states have dif-
ferent utilities and applying game-theoretic reasoning in the
exploration of future expectation states. Note that concrete
agent designs may of course allow for switching strategies at
runtime.

The purpose of strategies is to determine what model of
belief revision the agent will use to evaluate the conditions
of behaviours. Generally speaking, behaviours are rules that
determine how the state of one’s overall expectation base af-
fect the reasoning agent’s behaviour. In practice, they will
usually be conditioned on statements about expectations,
and the truth value of these will be established applying the
agent’s strategy to the expectation base. One behaviour in
the above example might be, for instance, “if A thinks that
B is unreliable, A doesn’t have to be trustworthy to B”.
This rule refers only to the current state, but more complex
rule conditions like “if it is possible that B might be deemed
unreliable in the future” might involve evaluating expecta-
tions along a set of possible projections of future events (and
this is where the complexity of the strategy would strongly
determine how elaborate the reasoning process is that the
agent has to apply to verify behaviour conditions).

In itself, ESB does not of course generate any concrete
agent behaviour and has to be integrated with some more
general reasoning and execution architecture to yield a com-
plete agent design. For the purposes of this paper it suf-
fices to assume that behaviours always have an overall belief
change in the agent as their only consequence, i.e. each ESB
behaviour is of the form“if ψ then (don’t) believe φ”where
ψ is a condition on the expectation base. This means that
a behaviour simply causes a belief update, and we assume

Iain Wallace, Michael Rovatsos • Bounded Practical Social Reasoning in the ESB Framework

1099

that an architecture such as BDI will be affected by this up-
date appropriately, e.g. by making certain plans available or
unavailable depending on the truth status of φ.

3. FORMAL MODEL
Formally, the expectation “whenever condition C holds,

agent A will expect Φ, verify it with test T and react with
ρ+ if it is true or ρ− otherwise” is represented as

Exp(N AC Φ T ρ+ ρ−)

where

N is the name of the expectation, taken from a set of ex-
pectation labels {N,N ′, . . .},

A is the agent holding this expectation, taken from a set of
agent names {A,A′, . . .},

C is the condition under which the expectation holds,

Φ is the expected belief, i.e. an event or an expectation that
another agent is assumed to hold1, or some other in-
ferred belief about the world,

T is the test which confirms (or rejects) the expectation of
Φ (an observable event),

ρ+/ρ− are the positive/negative responses to the test T ;
these could be modifications to its internal state, in-
cluding modifying the set of expectations it holds.

The formal semantics of expectations can be easily expressed
in the LORA [10] logic, a multi-modal propositional BDI
logic which combines modalities for belief, desire and inten-
tion with aspects of dynamic logic and CTL temporal logic,
using standard propositional notation. Using LORA, we
can define expectation tuples as follows:

Exp(N AC Φ T ρ+ ρ−) :=A�(current U update)

where

current =(Bel A C) ⇒ (Bel A Φ)

update =
“
(Bel A T) ∧ A© ρ+

”
∨

“
(Bel A ¬T) ∧ A© ρ−

”

and

ρ+ ≡{Exp(N ′ A′ C′ Φ′ T ′ ρ′+ ρ′−), . . .}
ρ− ≡{Exp(N ′′ A′′ C′′ Φ′′ T ′′ ρ′′+ ρ′′−), . . .}

such that the responses are sets of expectations.
To avoid going into too many details of LORA here, it

suffices to point out that A is a path quantifier that refers
to the temporal structure of the logic and denotes “on all
paths”, U stands for the “until”-modality (so that φ U ψ
means φ will hold in the future until ψ, and ψ will occur
at some point), Bel is the “believes”-modality, © means “in
the next time step”, and � denotes “always in the future”.
Φ and C are arbitrary LORA formulae, T is an observable
event that becomes true or false at some point in the future
and is beyond the agent’s control.

Thus, Exp(N AC Φ T ρ+ ρ−) informally means:

1Nesting expectations allows modelling of other agent’s
mental states, and adaptive behaviour on the part of either
agent.

In all paths it is always the case that: Belief in C
implies belief in Φ, until T is believed and in all
paths at the next time step ρ+ or ¬T is believed
and ρ− holds.

Below, we will assume that “A holds expectation N” has
precisely this meaning.

To refer to the various parts of an expectation and the var-
ious different expectations an agent may hold, we introduce
the notation Ei

X to refer to component X of expectation i
in a set of expectations. So, for example, E2

C refers to the
condition of expectation 2.

Furthermore, we define EXP as the total set of all pos-
sible expectations a particular agent might have, which is
currently taken to be finite2. Note that by this we mean
all expectations that are possible for one particular agent
to hold, not the set of all possible expectations that can be
expressed using the syntax introduced.

The following two subsets of EXP will also be useful:

• At any time an agent holds a certain number of so-
called active expectations i.e. exactly those expecta-
tions for which (Bel A C) ⇒ (Bel A Φ). These form
the set EXPA ⊆ EXP.

• An expectation depends on a condition C, under which
it holds. The set of expectations whose conditions
are currently true, i.e. those for which (Bel A C) ⇒
((Bel A Φ) ∧ (Bel A C)) holds, form the current ex-
pectation set EXPC ⊆ EXPA.

The set of active expectations changes according to the re-
sults of tests and responses as defined in the expectations
themselves. Responses need only add or remove expecta-
tions (as this is equivalent to making changes in expecta-
tions, if the total set is finite), and below we will use add(S)
amd remove(S) as the only two possible responses in an ex-
pectations which correspond to removing the set S from the
set of currently held expectations.

3.1 Strategies
Next, in order to define strategies formally, consider the

set of active expectations EXPA ∈ ℘(EXP) which is changed
by the responses, whenever test outcomes become available.
So the responses can be thought of as defining a relation
between the states that the agent’s reasoning can be in:

xRy where x, y ∈ ℘(EXP)

The agent can then be in one of a finite number of expecta-
tion states which correspond to possible active expectation
sets. These states and the relation between them can be
represented intuitively by a digraph referred to as the expec-
tation graph. More useful still is a restricted sub-graph, con-
taining only those vertices accessible from the initial state
(we will see an example of this later in Figure 1).

With this structure in mind, a strategy is a way to restrict
this graph in some way, according to some reasoning scheme.
This is useful as behaviours rely on checking conditions on
the graph. For example, a strategy could be only considering
the positive responses of expectations, which would restrict
the accessible portions of graph. The abbreviation Si will
be used below to refer to a single state i where there are
several states under discussion.
2This restriction has certain implications; for example, re-
sponses that increment a counter cannot be included.

AAMAS 2009 • 8th International Conference on Autonomous Agents and Multiagent Systems • 10–15 May, 2009 • Budapest, Hungary

1100

3.2 Behaviours
As we have explained above, we assume that behaviours

are rules matching conditions on the expectations to actions
external to the social reasoner, where actions would take the
form of adding or removing beliefs to influence (say) a BDI
practical reasoner (by restricting the plans in the library
that can be currently used).

The set of expectations describes not only current social
reasoning – represented in the active expectations – but also
possible future belief states, and these belief dynamics are
encoded in the graph structure. So behaviours may include
conditions such as “Φ will always be expected” and “it is
possible to expect Φ” in the future.

For now, we are just considering expectations at the meta-
level, rather than reasoning over their content. For example,
consider a simple case where Φ1 = p, Φ2 = q and p ⇒ q.
Should behaviours which have Φ2 as their condition also ap-
ply when the agent holds Φ1? For the time being, we argue
that expectations should be considered as atoms, and infer-
ences between them not drawn. This reduces the power of
the system (for example it may not be possible to check for
certain expectation conflicts) but it also greatly simplifies
the system. And it is in part due to increased simplicity
of reasoning that we expect to see some advantage in using
ESB, where in fact it does not require the use of logic in ac-
tual designs (although it would be fairly straightforward to
come up with formal inference rules that are based on tau-
tologies in LORA and allow reasoning over relational expec-
tation contents, albeit with the usual tractability problems
associated with such deductive reasoning in practice).

4. INTRODUCING AN EXAMPLE
To illustrate the workings of ESB we use an example sce-

nario taken from the domain of the Rummy [1] card game.
For the purposes of this example it is only important to
understand that players are trying to collect either runs of
cards in a suit, e.g. {2♣,3♣,4♣}, or sets, e.g. {2♣,2♦,2♥}
(given a card C, we refer to other cards that could be part
of a set/run with that card as a “member of C’s sets/runs”).
Melds, as these sets or runs are called, must contain a min-
imum of three cards. On their turn a player must either
pickup a card from the deck, which is unseen, or from the
top of the discard pile, which is visible to all. They then
create any melds they can and place a card on the top of
the discard pile, play then passes to the next player.

In our example expectations shown in Table 1, the re-
sponses take the form of adding and/or removing the speci-
fied expectations as indicated, depending on the T test out-
come. Combining the sets of expectations to remove and
add (assuming they are disjoint) is enough to specify a state
transition. The tests are listed with the positive and neg-
ative result, so when we talk about T holding, we mean
“if + and not −”. The initial set of expectations held are
{E1, E2, E5}. This represents an agent whose starting posi-
tion is to be open to the notion of the opponent carrying out
either strategy. As the purpose of this example is to illus-
trate the workings of ESB, the rules have been restricted to
specific examples for simplicity. For example, it should be
obvious that 2 and 5 are both instances of some more gen-
eral rule – to expect the opponent is collecting a run when
they pickup a member card of the run.

The card game Rummy provides a simple example do-

main, as the strategies that an opponent might use are
known, but defined by the cards they hold – which are un-
known. Therefore assumptions (Φ) must be made about
these cards based on what the opponent has picked up and/or
discarded in the past (C). These assumptions are borne out
by the opponent’s future plays (T) and the reasoning can
be adjusted (ρ+, ρ−). Behaviour can then be chosen to be
based not only on current expectations, but also on potential
future melds they may collect – accounting for an opponents
possible change in reasoning in the future.

4.1 ESB Setup
The example involves only two players, where the ESB

agent A reasons about its opponent B picking up a 2♦. We
consider only relatively naive reasoning on A’s part: that B
will either be collecting a run of diamonds around 2, or a set
of 2s (A assumes B won’t hedge her bets by collecting cards
for both a run and a set). The reasoning for this example is
encoded in the expectations in Table 1.3

We assume that the game is expected to end soon in the
current situation. For this reason, A has decided not to
consider all possible future strategies, but to only reason
about what B’s strategy might be at this time.

A simple strategy we can apply in this case is to only con-
sider the expectation graph to a depth of one from the cur-
rent state and to ignore loops. The justification of this strat-
egy is that responses are triggered by observations (which
update the status of tests), and these must come from ob-
serving cards being played or picked up. For the purposes
of checking if behaviours are possible in the future loops
are not considered, as those expectations are already in the
current set of expectations and accounted for.

Behaviours take the form of conditions (on the strategy
graph and expectations) and actions (which may be direct
actions or internal ones). For the purposes of this example,
the agent cares only which cards are safe to discard based on
the model of the other player’s reasoning. So three simple
behaviours are as follows:

1. Only discard a 2 if B is not collecting 2s.

2. Only discard a 3 if B is not collecting 3s.

3. Only discard cards I don’t expect B to be collecting in
the future.

Whilst these make sense intuitively, it is worth translating
them into specific conditions on the expectations, as this will
prove useful for the rest of the example:

1. (a) Discard 2♦ if ¬E1
Φ ∧ ¬E2

Φ ∧ ¬E5
Φ

(b) Discard 2♣ if ¬E1
Φ

2. Discard 3♦ if ¬E2
Φ ∧ ¬E5

Φ

3. (a) Discard 2♦ if in all accessible states ¬E1
Φ∧¬E2

Φ∧
¬E5

Φ

(b) Discard 2♣ if in all accessible states ¬E1
Φ

(c) Discard 3♦ if in all accessible states ¬E2
Φ ∧ ¬E5

Φ

3As there are limited actions available to the players, and
both tests and conditions must depend on these actions, the
T and C components appear similar in the Rummy example,
this need not be true in the general case.

Iain Wallace, Michael Rovatsos • Bounded Practical Social Reasoning in the ESB Framework

1101

Table 1: Expectations in the Rummy example: the labels of initial expectations (1,2,5) are shown in bold
face; tests are broken down into +(. . .) and −(. . .) events that would confirm/disappoint the expectation

N C Φ T ρ+ ρ−

1 B picked up 2♦ B is collecting 2s +(B picks up a 2)
−(B ignores/discards a 2)

remove({2,5})
add({3,4})

remove({1})

2 B picked up 2♦ B is collecting ♦
run

+(B picks up member of 2♦ run)
−(B ignores/discards member of 2♦ run)

remove({1,3,4})
add({5})

remove({2,5})
add({3,4})

3 B discarded 2♣ B not collecting 2s +(B ignores a 2)
−(B picks up a 2)

- remove({1,3})
add({2,5})

4 B ignored a 2 B not after 2s for
run or set

+(B ignores a 2)
−(B picks up a 2)

- remove({1,3})
add({2,5})

5 B picked up 3♦ B is collecting ♦
run

+(B picks up another member of 3♦ run)
−(B ignores/discards member of 3♦ run)

remove({1,3,4})
add({2})

remove({2,5})
add({1,3,4})

Figure 1: Accessible Expectation Graph

Here, “in all accessible states” refers to all states accessi-
ble from the current expectation state (assuming all EΦ are
true), according to the strategy. So in the case of this exam-
ple, it means all vertices adjacent to the one corresponding
to the current state.

As far as the link to a practical reasoning is concerned, in
the case of this example, the behaviour“action”“Discard 2♦”
could represent a belief that it was safe to discard the 2♦.
Guards on plans of, say, a BDI reasoner, would then ensure
that only actions consistent with the permitted behaviours
(the outcome of ESB reasoning) were selected.

4.2 The Accessible Expectation Graph
Figure 1 shows the accessible expectation graph generated

from the expectations in Table 1. Vertices are labelled with
the expected belief of each expectation tuple, as this makes
consideration of the relevant behaviours easier. The initial
state S2 is indicated by the double lines. Edges represent
transitions specified by the responses. A loopback to a state
indicates that the ρ+/− responses of some expectations do
not cause a change in state. The bold parts of the graph
illustrate the restriction to the strategy graph for an agent
in state S5.

5. REASONING IN ESB
To show that ESB can take account of typically complex

social reasoning problems alongside practical reasoning, we
will now describe how the agent’s social reasoning mech-
anism can be bounded using ESB, and how some aspects
of reasoning within ESB can be automated in a generic,
domain-independent fashion.

5.1 Simple Reasoning Algorithms for ESB
The central structure in ESB is the expectation graph, or

its derived variants. However it is not necessary for a system
designer to create this, a lot of the power of ESB comes from
the fact that it is a general structure and can be generated
simply from a list of expectations. To create the complete
expectation graph – featuring the complete set of states is a
fairly simple (even though computationally expensive) pro-
cess. The basic idea is that each possible combination of
expectations forms a vertex, and where a response is to add
some set of expectations and remove some set, an edge links
that vertex to identical one only with the added expecta-
tions, and without the removed set. This can be done with
the following algorithm:

Initialise set of vertices: V ← ℘(EXP)
FOR each state Sa in V

FOR each expectation EX in Sa

FOR each response ρ+, ρ−

Response is add(add_set), remove(rem_set)
Add a directed edge from Sa to Sb,

Where add_set = Sb \ Sa, rem_set = Sa \ Sb

Label the edge with EX
T for ρ+

Label the edge with ¬EX
T for ρ−

END FOR

END FOR

END FOR

This algorithm represents the relation between states de-
scribed previously in section 3.1. As this is a naive algorithm
that creates the complete expectation graph (with 2|EXP|

states) it will be impractical for most real-world situations.
A very basic simplification one can perform to limit its size
is to consider the accessible expectation graph, i.e. the graph
generated by a search that starts in the initial state and ex-
pands the graph until all the edges have been added in the
manner described above. Termination occurs when every ex-
pectation in every state has been considered, and no more
vertices are added. Figure 1 shows this accessible graph for
our Rummy example.

AAMAS 2009 • 8th International Conference on Autonomous Agents and Multiagent Systems • 10–15 May, 2009 • Budapest, Hungary

1102

As stated above, we assume that in the situation in ques-
tion, the agent simply restricts the graph to a depth of one,
i.e. the current state and all its adjacent states. This can be
easily obtained from the expectation graph described above,
given a current expectation state (for state S5 in our exam-
ple this sub-graph is displayed as the darker areas of the
expectation graph in Figure 1). A key point worth noting is
that while the expectation graph is fixed, the strategy graph
is dynamic and may change based on the current expectation
state (and, potentially, a change in strategy).

5.1.1 Implementation as an FSM
Independent of the actual expectations themselves, a large

part of the ESB design can be generalised for implementa-
tion. To handle tracking state, a finite-state machine can be
constructed with one state for each state S in the accessible
expectation graph, and selecting transitions by applying the
ET tests for any current expectations (exactly those with
E ∈ S and EC = true). As only the expectations current to
the state need be checked (since all their dependencies have
been “precompiled” into the expectation graph offline), this
bounds run-time reasoning further in useful way.

As well as keeping track of the ESB state, it is necessary to
keep track of the expectations to test. This is another area
where the ESB approach helps bound agent reasoning, as it
is only necessary to test the conditions of the expectations in
the current state, and infer the appropriate expected beliefs
Φ, as follows:

FOR all EX in current state Si DO

IF EX
C THEN Believe EX

Φ

END FOR

The final part of an ESB design concerns the behaviours,
and these may depend on the current state, or may be condi-
tional on possible future expectations. For the current state
it is simple to use the various Φ as the guard on plans at
the level of the general practical reasoning – as in the ex-
ample behaviours given above – but the future expectations
require a slightly more complex approach. These conditions
are likely to take the form of “in all possible cases the agents
might expect X” or “in some possible case the agent might
expect X”. For the latter, it is simply a case of searching
the strategy graph representation for a state matching the
condition. For the “all cases” condition, the graph must be
searched until all vertices have been checked.

5.2 Simplifying Behaviours
As a further example of how our graph-based represen-

tation of the reasoning structure provides opportunity for
an analysis of the design – particularly to bound reasoning
further – we introduce a method that can be used to reduce
the number of behaviour rules that need to be checked each
reasoning cycle, and the complexity of checking them.

More specifically, in our Rummy example the rules under
3. are expensive to check, as they involve searching the ex-
pectation graph – but these are typical of any behaviour that
is conditioned on potential future events. The approach we
suggest is to perform offline reasoning at the design stage,
and will lead to simplifying run-time reasoning during execu-
tion. This off-line reasoning is of course itself computation-
ally expensive, but we argue that performing this computa-
tion once during design is preferable, as it greatly simplifies
reasoning during execution.

FOR each behaviour B create a new set

of conditions B′C containing only false

FOR each behaviour B
FOR each state Si = {E1...En} ∈ accessible E-graph

IF BC= true for each combination of

{E1
Φ...E

n
Φ} THEN

Add ∨Si to B′C
ELSE IF BC = false for each combination of

{E1
Φ...E

n
Φ} THEN

Add nothing
ELSE some minimal combination Min is a

minimal subset of ({E1
Φ...E

n
Φ} ∪ {¬E1

Φ...¬En
Φ})

making BC = true THEN

Add ∨(Si ∧ Min) to B′C
END IF

END FOR

END FOR

Figure 2: Algorithm to update behaviour conditions

Behaviours are conditions with actions linked to them, so
optimisation takes the form of re-writing the conditions to
include state, and where possible restricting the conditions
yet further to simplify testing. The intuitive reasoning be-
hind the algorithm we use is that considering each behaviour
in each state in turn, there are three possibilities:

1. The behaviour condition is true regardless of the com-
bination of expected beliefs that holds. In this case we
can always apply the behaviour in this state.

2. The behaviour condition is false regardless of the com-
bination of expected beliefs that holds. In this case we
can never apply the behaviour in this state.

3. Whether or not the behaviour condition applies de-
pends on whether some minimum combination of ex-
pected beliefs holds.

The main reason a behaviour condition might always be false
(or true) is that it depends on future expectations – which
are assumed to be true for the purposes of checking condi-
tions – so only accessibility will matter. In this case it is the
state that is important, so including it in the condition can
simplify testing. The prospect of dependence solely on state
is likely to be common, as it can affect any behaviour rules
acting over change in reasoning.

The process of re-writing conditions to include state can
be carried out with the algorithm shown in Figure 2. It is
possible to have nothing added in the second case, as for
every other case the state is considered, so states left out
of the condition term will satisfy no other part of the term,
and will not be considered at all. Applying this algorithm
to the current Rummy example, we obtain the simplified set
of behaviours shown in Table 2.

The process does not end here. As some of the behaviours
share identical actions, they can be combined by only allow-
ing the action when both conditions hold. This brings us
closer to the original meaning of behaviour rule 3, which was
previously expanded to form the three separate sub-rules.
This also greatly simplifies the conditions, as for example,
forming a conjunction between the conditions of 1(a) and
3(a) includes the term ∧false, thus reducing the entire term
to false. We can easily build another table that lists each
new behaviour against every state as well as the condition

Iain Wallace, Michael Rovatsos • Bounded Practical Social Reasoning in the ESB Framework

1103

Table 2: New Behaviour Conditions after Expectation Graph Analysis
Behaviour Action Original BC New B′C
1(a) Discard 2♦ ¬E1

Φ ∧ ¬E2
Φ ∧ ¬E5

Φ (BC ∧ S2) ∨ (¬E2
Φ ∧ ¬E5

Φ ∧ S1) ∨ (¬E1
Φ ∧

S3) ∨ (¬E2
Φ ∧ ¬E5

Φ ∧ S4) ∨ S5

1(b) Discard 2♣ ¬E1
Φ S1 ∨ (¬E1

Φ ∧ S2) ∨ (¬E1
Φ ∧ S3 ∨ S4) ∨ S5

2 Discard 3♦ ¬E2
Φ ∧ ¬E5

Φ (¬E2
Φ ∧ ¬E5

Φ ∧ S1) ∨ (¬E2
Φ ∧ ¬E5

Φ ∧ S2) ∨
S3 ∨ (¬E2

Φ ∧ ¬E5
Φ ∧ S4) ∨ S5

3(a) Discard 2♦ In all accessible states ¬E1
Φ ∧ ¬E2

Φ ∧ ¬E5
Φ false

3(b) Discard 2♣ In all accessible states ¬E1
Φ S3 ∨ S5

3(c) Discard 3♦ In all accessible states ¬E2
Φ ∧ ¬E5

Φ S1

required to trigger it. Each entry is either false, or where
there is a conjunction of a state and condition, the condi-
tion is added to that state and behaviour. Where only a
state is present, the condition can be considered to be true.
For the previous example, this produces the following table
(cells indicate the condition B′C):

Action Discard 2♦ Discard 2♣ Discard 3♦
State

1 false false ¬E2
Φ ∧ ¬E5

Φ

2 false false false
3 false ¬E1

Φ false
4 false false false
5 false true false

This allows us to infer that we only need to check behaviour
conditions in states 1 and 3, and that state 5 always triggers
behaviour 1(b). The final simplified behaviours are visu-
alised in a simplified graph shown in Figure 3.

Figure 3: Reduced Behaviour Expectation Graph

5.3 Advanced Social Strategies
The strategy in the example presented above, which is to

simply limit graph search by depth, is very simplistic and
does not use truly “social” approaches to bounded practical
reasoning about the other.

ESB can be used to represent much more complex strate-
gies that allow us to incorporate considerations about dis-
tributed, multi-party reasoning. When nested expectations
are allowed, for example, strategies could restrict the depth
of nesting, or perhaps even restrict nesting based on some
measure of confidence (which could be updated by responses).

Another possibility which we only briefly discuss here for
lack of space is using ideas from decision theory or game the-
ory to influence the design of strategies. For a short example,
consider an agent wishing to adopt a minimax strategy for
reasoning. The key point of such a strategy is that at every
move it is assumed the opponent will pick the worst scoring
option for the agent, and so for its move the agent will max-
imise this minimum. To apply this concept to our running
example, the “moves” are the observed results of the T tests.
The ESB agent’s moves are not represented in the expecta-
tion graph for simplicity, but its behaviour should maximise
this worst-case play by the opponents. We restrict the ex-
pectation graph by applying this principle before evaluating
the preconditions of behaviours. This requires making as-
sumptions about the evaluation function the opponent uses,
which (to keep things simple) might look something like this:

• A pickup scores −1, as they’ve gained a useful card.

• A discard scores +1 as they’ve lost a card.

• Ignoring a card scores 0 as it tells us nothing.

So the strategy is now to build a tree of the graph to a certain
maximum depth (say 2), and then restrict it to only those
paths which score lowest (adding the scores down each path
to gain a total at the leaves). Assuming state S4 as initial
state, this gives us the following strategy graph:

For lack of space, this strategy does not include assump-
tions about the agent’s own behaviour. This means that
the only influence the mini-max strategy has is to restrict
behaviours according to it. If the agent’s actions were in-
cluded in the example, then the strategy graph could be
reduced further still by selecting those which maximise the
ESB agent’s own utility. It does however give a flavour of
what more advanced social reasoning strategies might look
like, and illustrates the power of the framework keeping in
mind that we could apply the algorithms described above to
such more advanced mutual modelling schemes.

AAMAS 2009 • 8th International Conference on Autonomous Agents and Multiagent Systems • 10–15 May, 2009 • Budapest, Hungary

1104

6. CONCLUSIONS
In this paper we have introduced the ESB framework for

the design and implementation of a practical social reason-
ing component for an intelligent agent. Based on the idea of
constructing social reasoning mechanisms from belief revi-
sion mechanisms regarding hidden properties in the system
(such as the mental states of other agents), we developed a
notion of expectation that captures all the elements that are
necessary to link beliefs held about non-observable parts of
the system. It also allows us to express belief dynamics at a
practical, procedural level while benefiting from declarative
representations. The other two main components of the ESB
architecture are (i) strategies which determine how expecta-
tions are reasoned about and to what extent the agent is
bounding its own social reasoning and (ii) behaviours which
link expectation states to the more general practical reason-
ing component of the agent.

Using a simple graph-based approach, we then went on to
describe generic reasoning methods which prove ESB allows
generalisation of part of a social agent’s design, and aid in
the analysis and bounding of its reasoning.

Encoding the reasoning in expectations appears intuitive,
and given this encoding the algorithms described above al-
low for the expectation graph, strategy graph and resulting
state-update FSM to be generated, regardless of the con-
tent of the expectations themselves. It is easy to see how
this could be extended to allow direct execution of an ESB
specification, through automated generation of the FSM.

More designer input is required in the case of the be-
haviours, which must be translated into conditions on the
expectations, and future expectations. However we argue
that this is a logical way to design an agent, as much like
determining plans in a BDI agent design, ESB behaviours
follow from reasoning of the form “in what conditions do I
perform behaviour X?”.

7. FUTURE WORK
The most obvious avenue to pursue for future work is the

development of more algorithms for analysis of the agent
design, either to compare properties of reasoning schemes,
bounding an agent’s reasoning, or identifying possible de-
fects in the design – in a similar fashion to a model checker.
As it stands, we do not exploit logical inference between ex-
pectations which limits the power of expectations. If ESB
was extended to exploit inference, then complex logical be-
haviour conditions could be evaluated using a model checker
and language such as MABLE [12].

Model checking is also a possible solution to a problem
with the work – there is a slightly inconsistent mix of the
graph-based approach and the logic-based definition of what
it means to hold an expectation. A possible solution for
this is to prove that algorithms applied to the graph are
consistent with respect to the logic.

It is also planned to extend ESB to include nesting of ex-
pectations. The theory has been designed with this in mind,
as it shows promise to be a very powerful concept. This
would involve the expected belief Φ of an expectation being
not just a simple belief, but an expectation itself, possibly
of another agent. This would in turn allow for more explicit
modelling of other agent’s reasoning processes. The notion
of reasoning with expectations belonging to another agent
is easy to see, even for the given example. Consider that
the expectations could be reversed, so that they were owned

by the opponent, and then the agent’s behaviours based on
these could be chosen to ensure that it played appropri-
ately to ensure the other agent was in a certain expectation
state. This provides a mechanism to deliberately influence
the other.

The possible explosion in the number of states in the ex-
pectation graph is another issue that requires further inves-
tigation. Restricting to the accessible expectation graph in
the current state will not always help, as this is still the
full graph in the worst case. The computational cost of the
algorithms presented here is high, however these are only
the most obvious naive algorithms – so improvements are
certainly possible.

As ESB is only targeted at the social reasoning compo-
nent of an agent, and a large part of this can be generalised
and automated, it would seem that ESB could at least offer
a more suitable solution than an all-in-one reasoner. This
does not solve the complexity problem however, and for any
implementation bounding the graph for computational rea-
sons will be important. This is where strategies aimed at
reducing the scope of the graph in use could come into play.

These possibilities all fall within one general avenue of re-
search – that of ESB as a tool to aid design. The other
key avenue to explore is that of ESB as a tool to aid impl-
mentation, where ESB specifications are directly executed
in some way. This would be possible, as a large part of the
process is both general and easily automated as described
here. These (and more refined) algorithms describe a kind of
“ESB engine” which could be further developed into an im-
plementation as an extension to an existing practical agent
reasoning scheme.

8. REFERENCES
[1] Rummy.com - The Rules of Rummy, 2008.

http://rummy.com/rummyrules.html.

[2] M. E. Bratman, D. J. Israel, and M. E. Pollack. Plans and
resource-bounded practical reasoning. Computational
Intelligence, 4(4):349–355, 1988.

[3] F. Dignum, D. Kinny, and L. Sonenberg. From Desires,
Obligations and Norms to Goals. Cognitive Science
Quarterly, 2(3-4):407–430, 2002.

[4] P. Gärdenfors, editor. Belief Revsion (Cambridge Tracts in
Theoretical Computer Science). Cambridge University
Press, 1992.

[5] B. Horling and V. Lesser. A survey of multiagent
organizational paradigms. Knowledge Engineering Review,
19(4):281–316, 2004.

[6] N. Jennings. Commitments and conventions: The
foundation of coordination in multiagent systems.
Knowledge Engineering Review, 8(3):223 – 50, 1993.

[7] A. S. Rao and M. Georgeff. An abstract architecture for
rational agents. In W. S. C. Rich and B. Nebel, editors,
Proceedings of Knowledge Represenation and Reasoning
(KR&R-92), 1992.

[8] S. Saha, A. Biswas, and S. Sen. Modeling opponent
decision in repeated one-shot negotiations. In Proceedings
of the International Conference on Autonomous Agents,
pages 535 – 541, 2005.

[9] G. Weiß, editor. Multiagent Systems. A Modern Approach
to Distributed Artificial Intelligence. The MIT Press,
Cambridge, MA, 1999.

[10] M. Wooldridge. Reasoning about Rational Agents. The MIT
Press, 2000.

[11] M. Wooldridge. An Introduction to Multiagent Systems.
John Wiley & Sons, 2002.

[12] M. Wooldridge, M.-P. Huget, M. Fisher, and S. Parsons.
Model checking for multiagent systems: The MABLE
language and its applications. Int. J. Artif. Intell. T.,
15(2):195–225, 2006.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 36
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 36
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 36
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU (Use these settings with Distiller 7.0 or equivalent to create PDF documents suitable for IEEE Xplore. Created 29 November 2005. ****Preliminary version. NOT FOR GENERAL RELEASE***)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

